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A uniformly distributed normal traction, varying harmonically
with time, is applied to the surfuce of a spherical cavity in an in-
finite hamogeneous, isotropic, elastic solid. The response of the
system is found to be similar to that usually associated with damped
vibrations of bodies containing reflecting boundaries. An explanation
is obtained by comparing the elastic system with a damped, simple
ossillator. The same probiem is then solved faor a cylindrical cavity

of circular sectior and infinite length.
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The body is referred to a system of spherical coordinates , , 9‘,¢ ’
with origin at the center of the cavity. (Fig. 1)

The equation of smwall motion of an isotropiu elastic bodyl,
Vi +Aend V7t m p2H
o + + U = (=3
“m on /“ wonn on C ?cl (1)

becomes, oo the assumption that () = 4, (7;¢) U= Up=O,

9\ .
G324/ 4% &

vhere
i)

is the velocity of dilatational waves,
It may be verified by substitution that (2) is identically satisfied

by the diverging wave,

Y, -/:Q,_’/;_i l/r—cé'/

Alr-ct)

Using forl wae real part of ,42 s With ‘ an, as yet, undeter-

mnined wave number and ;4 a complex constant, wo have,

1. A. E. H. Love, Theory of Elasticity, (Dover Publications, New York,
1944 ), 4th Editilon, p. 278,
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chlr-c)

7 - /,pz/«)%%,zxgﬁ, Gom fym 0.

; Hence
| i idlrct)
| p;r,_44_/_,_ﬁ7,§"§ﬁe
vhere
- oAty _ /—7T
/ 4}« 2(-20)
and o~ is Poisson's ratio.
Porced Spherical Motion
If the applied force 1s
- 'wl"
] = P
r=Q
wve must have

Al Lfi3-24)4)]”

Love, p. 142.

-le

: 4eA-L4 (?;/e
iven by
v The stress components (.. (o, /ry are given

(3)

(4)
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The cordition of vanishing traction for ,»/a_. e 18 satisfied.

Pram (3) and (6) the anplitude of ¢/ on r=a 1is given by

// = [+t /yz (7)

= Q 4/" /—AD‘}‘ 'f'F

vhere the non-dimensicnal quantity pP= Q‘:Q contains the effects of the
foreing frequency, the radius of the cavity and the physical properties of
the material.

To obtain the radial displacement of points on the spherical surface
vhen it is subjected to a uniformly distributed static pressure 2, it is

only necessary to sst po=C 1ia (7), whence

uffah‘(/ = g—e (8)

The displacement amplification factor is given by

/U,- rea / /+f" ;'2 (9)
y] , O~

Amplification factor versus P is plotted for three wvalues of Poisson's ratio
in Figa 2.
The "eritical” value of/b sy 1.6,y the valus of P vhich produces maximum

amplification, is given bv
Ja
- &/+Z/3" —// .

The corresponding critical value of the forcing frequency 45 is




—_ /e
coc=%pc __.g[ /+28~' —// l, (20)

The steudy-stste response of the system is seen to be of a type usually
essociated with damped motions of bodies corteining reflecting boundaries,
This "resonant™ behavior of the infinite solid may be studied further by consid-

ering the free vibrations of the system.

Free Scherical Moticp

For free motion of the body, 77, must vanish on /"= & . Hence, from (5)

a’ a
so that

#e 24 : (11)
wvhere

2ha '’ & 244

(Note that é/ and é are positive, real quantities since ﬂ) //3 for
-/< g-</2. Also, we may replace # 3, y by t&, as the minus sign merely
introduces a phase change in the displacements.)

We must ascertain whether or not the cocplex value of z given in (11)
gives rise, upor substitution into (3) and (5)y to displacements and tractions

which vanizh at infirity. We observe that

££/— 19, - @ _ikel
A/F/,*gfé/e T AP (e
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where /1 i a complex constant and /7/3/2 (’é‘r‘) is a Hankel function of the

second kird. These functions vanish at infinity when the imaginary part of
their argument is negativez, as it is in this case, according to (11).

The motion is a diverging wave. A complex circular frequency of particle
motion,Q y may be defined %o characterize the time deperndence of the displece-

ments,

QAo clh_k) (13)

We note, for future reference, that the relationship between the criticel fre-

quercy of forced motion, £). , and the complex frequency asscciated with free

<
notion, {7 , is given from (10), (12) and (12) by

yr
@ _ g/g_(z[ﬁ/d/f'-/] (14)
J48-1 ~ ¢

Simple Oscillator

Consider now the response of a Voigt Element., A spring (spring constent
= S , dash-pot (coefficient of viscous damping =7 ) and mass (/77 ) are arranged

as shown in Fig. 3.

The free vitrations of /7?7 are characterized by the complex frequency

_.Q*— a{[ﬁ-«‘ - (o (15)

vhere
*.
o, .=V,_;)_é:' is the natural frequency of undamped motion and

& = Zs5,m 1s the fraction of critical damyirg.

3. Jahnke and Emde, Tables of Functions, (Dover Publications, New 7Tork,
1945), 4th Edition, p. 133,
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If the support /\/is forred to perform harmonic oscillations with a
*
circular frequency, «w , the ratic of the amplituce of the steady-=tave
motion of /7 to the amplitude of the forced motion of,A/ is given by the

amplification factor

.
,4’:/ H[Zgﬁﬁ _ (16)
[~ (%) x s

*
Maximun amplification occurs when the forcing frequency, 4  takes on the

critical valve

% * }'/l
w o e [V1+8<* -l
¢ Lo
3%
or, expressed in terms of (2 , fram (15),

w QZ}/-.L&«‘ // (17)

2 Jr—oct - iot

The resonant response of this system is attributed to the fact that the

forced motion excites a possible mode of free motion. Maximum response is ob-

ined when the frequencies of the respective motions are related as in (17).

tweepn S ) 11
Motion of Elastic Con

Compurison of (9) and (16) shows that the amplification factors for the
infinite so0lii1 and the Voigt FElement hava the same form. Jt is thus possible
to identify the parameters of one system with their ccunterparts in the other,
ani wa may, for instance, discuss the infinite solid in terms of the oscillator

if we changs

-6=
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P e 2D
| (18)
S L
Foct
Further, the rel=tion between critical forcing frequency and natural frequency

is the same in the two systems. Performing ir (14) the changes indicated by

(18), we have,

/e
@), __.Q///*&(‘—// ,

Lo }'/—o(‘ - (o

and this is identical with the corresponding relation for the oscillator as
given by (17).

The resonant resporise of the infinite body may then be interpreted as
follows: The system is capable of performing a free, radial, oscillatory
motion which has a transient character. Damping of the motion is due to the
fact that the enerzy stored in the system at any instant is thereafter propa-
gated outward radielly, there being no reflecting boundaries. The free motion
has associated with it a definite frequency of undamped perticle oscillation,
&), s given by the modulus of the camplex frequency (2. , that is, from (12)
and (13),

4-2)4.

This may be compared with the natural frequency of radial vibration of a spher-
ical ehell® of rudius a

é//_./ﬂ‘.
a/z/—-ﬁ‘

4e Love, p. 287,
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Thus, the undamped natural frequemcy of an infinite body with a spherical
cavity of radius 4 is the same as the frequency of a spherical shell of
radius 2/(/+7)f/—r) . When harmonic surface tractions are applied across
the surface of the spherical cavity, the forced motion, thereby induced, ex-

cites the free motion and resonance occurs,

Riverging Cvlipdricsl Waves

The body is referred to a system of cylindrical coordinates » , &, 2 ,
the = -axis being coincident with the axis of the cylinder. (Fig. 4)

Assuning .:4;:L/r/.*;t‘)) Up= U, = O , the squation of motian (1) reduces

to
2 /[12(r /__/ iy (19)
SH7 5 )=A ok
The solution of (19) which corresponds to diverging waveas, is
_chet
Y= CLT k) + LY hr) e ‘ (20)

where { is any as yet, undetermined wave number, (' is a complex constant,
and (Z. and ),/ are Bessel's functions of order oney of the first and second kind
respectively.
6
The stress components (7,.",) 0ro, Vpa are given by

V,;-;A.g_r/ra,h;« Fo= = O. (21)

4
% )

5. lamb, Hydrodynamics, (Dover Publications, New Yerk, 1932), 6th Edition,

Pe 524
6. LOVU, Pe 288,
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Substituting (20) into (21),

A / (AJlhr) + (N +20)rk [ r)] »
2 (LAY kr) + (A+;u)ri>,’fh)]/2<' c (22)

where primes denote differentiation with respect to the argument.

Forced Cylindrical Motiop

The condition

_wlt
Vf-r = ID—e.
s

requires that

\

/C/ = aP/ [A]lka) +(A+54)ak] I//alf

‘ z -k
s [N tha) sOe2u)akY ha)]

(23)
and ‘ = &,
- )
The condition of vanishing traction for r/a—o.o is satisfied,
Fram (20) and (23), the amplituce of &, on /= A is given by

] 1

I, - 2P [ T'e)+ Y ) (24)
=4 2 [ [Jp)-Brd e+ Yied-Br% P

where
p=az , A A./%A,’a A ry

/=20

and /] y J] are Bessel's functions of order zero.
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The radial displacement of points on the oylindrical surface, when it

is subjected to a uniformly distributed static pressure P, 1s obtained at the

P e At P eyt

limit of (24) as /o—--O . Thus,

"’;fawj/ - ;Q/_{) . |

r=Q

The displacement amplification factor is given by

/l/r/r-a - sz) + ),"(p) & |
%] - | TTe) AT A V)T ;

Amplification factor versus )o is plotted for three values of Poisson's ratio,

in Fig. 5. BRere, again, it 1s scen that the amplification factor has the char-
acter of that of a simple oscillator. However, in this -ase, explicit formulas | 1
cannot be obtained for the undamped natural frequency and diameter of the equi-

valent oylindrical shell.




Fig. 1:

Spherical Cavity
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Fig. 5: Amplification Factor - Cylindrical Cavity
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